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A CHARACTERIZATION OF PGL(2, q), q ODD 

BY 

UDO PREISER 

ABSTRACT 

Let G be a finite group and A and B solvable subgroups of G, such that 
G = AB and 2 is the only common prime divisor of A and B. Under suitable 
restrictions of the 2-structure of A and B, it is shown that either G is solvable or 
G contains a solvable normal subgroup N, such that G/N contains a normal 
subgroup, which is isomorphic to PGL(2,q), q odd. 

Let  G be a finite group and A and B solvable subgroups of G satisfying 

G = AB .  It is an open problem to describe the structure of G. 

By a famous theorem of Wielandt and Kegel, G is solvable, if A and B are 

nilpotent. There are various other theorems describing similar conditions, which 

force G to be solvable. However,  there are non-solvable groups, which are the 

product of two solvable subgroups. Using the classification of the finite simple 

groups, Arad's  student Fisman recently determined those finite simple groups, 

which are a product of two solvable subgroups of coprime orders, see [4]. If A 

and B have coprime orders, then we have N = (N n A ) ( N  n B )  for any normal 

subgroup N of G ;  this allows one to determine all composition factors of a finite 

group, which is a product of two solvable subgroups of coprime orders. 

If there is a prime number dividing both I A I and I B I, then there might exist 

normal subgroups N of G, such that N is not the product of its subgroups N n A 

and N O B. Indeed, if you take G = PGL(2, pe), p odd, A the normalizer of a 

Sylow p-subgroup of G and B a cyclic subgroup of order  p" + 1, then you get 

G = AB.  On the other hand, this factorization does not intersect the normal 

subgroup N = PSL(2, p e) in a factorization of N. This is just the example which 

we want to characterize. More generally, we want to prove: 

THEOREM. Let G be a finite group, which contains subgroups A and B, 

satisfying the following conditions: 
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(a) G = AB. 

(b) (I A I, I B l) = 2k for some k. 
(c) The group B is a nilpotent group and has a cyclic Sylow 2-subgroup. 

(d) The factor group A/O~(A ) O ( A  ) is a cyclic 2-group. 

If S (G)  denotes the largest solvable normal subgroup of G, then either 

G = S (G)  or there exists an odd prime power q, q >3 ,  such that P G L ( 2 , q ) =  

G / S ( G )  <- PFL(2, q) holds. 

This is a generalization of a theorem of Finkel and Ward [3], who considered 

finite groups G, satisfying the hypothesis of the theorem above and in addition 

[A:O2(A)O(A)]<=_2. They proved that such a group is either solvable or 

G / S ( G )  contains a normal subgroup, which is isomorphic to PGL(2, q) with 

q = 3 (mod 4). 

As in [3], we can apply this theorem to products of supersolvable and nilpotent 

groups and prove: 

COROLLARY. Let G = A B  be a finite group with A a supersolvable and B a 

nilpotent subgroup. Assume that (I A I, I B I) is a power of 2, and that 02(B ) and 

the Sylow 2-subgroup of A / A ' are cyclic. Then either G = S ( G ) or there exists an 

odd prime number p, p > 3, such that PGL(2, p) <= G / S ( G )  <= PFL(2, p) holds. 

1. Notation and preliminary results 

Our notation is standard and can be found in [5] or [9]. Moreover, all groups 

considered are finite. The following results are frequently used: 

LEMMA 1.1 [9; VI, 4.5]. If  G = AB, A fq B = 1 and x ~  1 is an element of A, 

then x is not conjugate to an element of B. 

L E n A  1.2. If G = A B  with A and B cyclic 2-groups, then the commutator 

subgroup G' of G is an abelian group of rank at most 2. The sectional rank of G is 

at most 4. 

PROOF. By a theorem of Ito [9; VI, 4.4], the commutator subgroup G '  of G is 

an abelian group, generated by at most two elements, see [8; Satz 17]. Since the 

rank of the abelian group G/G '  is clearly at most 2, the sectional rank of G 

evidently is at most 4. 

LEMMA 1.3. Let G be a 2-group. Suppose that there exists an involution j in G 

such that C6 (j ) has rank 2. Then SCN3(G) = 0 ;  in particular, the sectional rank 

of G is at most 4. 
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PROOF. By our hypothesis, j is contained in each elementary-abelian sub- 

group of order 4, which is centralized by j. 

Let N be an elementary-abelian normal subgroup of G and suppose 1N I => 8. 
Then [ CN (/')l =~ 4 and hence j E C~ (j). Thus we get N ~ Cc (j), a contradiction. 

We conclude that the order of an elementary-abelian, normal subgroup of G 

is at most 4. Now we can apply [11] and find that the sectional rank of G is at 

most 4. 

LEMMA 1.4 [9; VI, 4.6]. If G = A B  and i]' p is a prime number, then there exist 

Sylow p-subgroups S of A and T of B such that ST is a Sylow p-subgroup of G. 

PROPOSITION 1.5. Let G be a finite group with subgroups A and B such that 

G = A B ,  (IAl,1131)--1, A/O2(A )O(A)  is an abelian 2-group and B is a 
nilpotent group of odd order. Then G is solvable. 

PROOV. Using the Unbalanced Group Theorem, Finkel and Lundgren 

proved this in [2]. A more elementary proof can be found in [10]. 

PROPOSITION 1.6. Let G be a group which satisfies the hypothesis of the 

theorem. Let p be an odd prime, q = p" > 3 and suppose that G contains a normal 

subgroup M, isomorphic to PSL(2, q), and that G is contained in the automorph- 

ism group PFL(2,q) of PSL(2, q). Then O2(A )= 1 and G contains a normal 

subgroup isomorphic to PGL(2, q). 

PROOF. By inspection of the subgroups of G or by Lemma 1.5, we infer 

02(B)#  1. Clearly, D: = A N B is a 2-group. Hence ((A O B) a) is contained in 

A. This implies A N B = 1. 

Now let P be a Sylow p-subgroup of M. Since C~ (P) = P, a conjugate of P is 

contained in A ; without loss P is contained in A. By inspection of the subgroups 

of M [9; II, 8.27], we conclude 

N,~ (P) _-< A < NG (P) 

and that B A M  contains a cyclic subgroup of order (q +1)/2. Since 
I A n MI2.1B N MI2<}MI2 holds, the index [G:  M] is even. 

If e is odd, the result follows immediately. Consequently, we may assume e to 

be even. Then 2 does not divide (q + 1)/2 and B n M has odd order. Thus G \ M 

contains an involution. Since this involution centralizes a cyclic subgroup of M 

of order (q + 1)/2, this automorphism cannot be induced by a field automorph- 

ism. From the description of a Sylow 2-subgroup of PI'L(2, q) [6; lemma 2.3], it 

follows that this involution is induced by a diagonal automorphism; in particular, 

G contains a normal subgroup isomorphic to PGL(2, q). 
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2. Proof of the Theorem 

Suppose the theorem is false, and let G be a counterexample of minimal 

order. If N is a non-trivial normal subgroup of (3 and if (~ = G/N, then 

(~ = fi,/~, and 5, and/~ satisfy the hypothesis of the theorem. Because of the 

minimality of G, the group (~ satisfies the conclusion of the theorem. If X is a 

proper subgroup of G, which either contains A or B, then X = (X A A )(X N B) 

and X satisfies the hypothesis and conclusion of the theorem. 

By Proposition 1.5 we get 02(B)# I. The famous theorem of Wielandt and 

Kegel [9; VI, w implies A # 02(A). We begin by showing: 

(2.1) The group G contains exactly one minimal normal subgroup M, which is 

a direct product of non-abelian simple groups. In particular S(G)= I. 

PROOF. Let M be a minimal normal subgroup of G. Then G/M satisfies the 

conclusion of the theorem. Since G does not satisfy the conclusion of the 

theorem, M is not solvable and a direct product of non-abelian simple groups. 

Assume L is a minimal normal subgroup with L #  M. Since G/L as well 

satisfies the conclusion of the theorem, G has precisely two minimal normal 

subgroups, and there exist odd prime powers q and r such that L -PSL(2,  r) 

and M - PSL(2, q) holds. 

Define P: = F(M N A)  the Fitting subgroup of M A A. By Proposition 1.6 P is 

a Sylow subgroup of M of order q. We have 

N~ (P) = ANB (P). 

As L is contained in N~(P), Na(P) is non-solvable and 02(NB(P))# 1 by 

Proposition 1.5. Let b be the involution in B. Then 

(b~) <-_Nc(P) 

and hence L is contained in (b~). 

By symmetry, M as well is contained in (b~). But now 

M <-(bG) <=Nc(P). 

This contradiction completes the proof of (2.1). 

(2.2) We have A M  = G = BM. In particular, G/M is a 2-group. 

PROOF. Assume A M  < G. Then A M  = A ( B A AM). By the minimality of 

(3, there exists an odd prime power q such that M ~ PSL(2, q) and A M  contains 
a normal subgroup isomorphic to PGL(2, q). Thus 
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G =< Aut (M)  = PFL(2, q) 

and G is no counterexample. 

A similar argument shows G = BM. As (I A l, } B }) is a power of 2, the factor 

group G / M  is a 2-group. 

(2.3) Suppose A = L < G. Then L t3 B has odd order and L is solvable. In 

particular we have A f3 B = 1. 

PROOF. Assume L fq 02(B)~  1. The normal closure of L fq 02(B) is con- 

tained in L. Since G contains exactly one minimal normal subgroup, M is 

contained in L, contradicting (2.2). 

We proved L f3 02(B)= 1. By Proposition 1.5, L is solvable. 

(2.4) We have 02(A)= 1. 

PROOF. Assume 0 2 ( A ) ~  1. By Lemma 1.4, there exists a Sylow 2-subgroup 

S of A such that SO2(B) is a Sylow 2-subgroup of G. Let b be an involution in B. 

Then b normalizes $, and if X is a (b)-invariant normal subgroup of S contained 

in Oz(A), then X = 1 by (2.3). In particular, S is abelian and 02(A) f3 02(A)b = 
1. Hence 02(A) is cyclic and S has rank 2. 

Let j be the involution in 02(A). Again by (2.3), S is a Sylow 2-subgroup of 

Co(j )  and C6 (j) is solvable; more exactly we get Cc ( j ) =  SO(Co (j)). 

We now claim that the sectional rank of a Sylow 2-subgroup of G is at most 4 

and that the minimal normal subgroup M is simple. If 02(B) has order 2, then 

the sectional rank of a Syiow 2-subgroup of G is at most 3, and the assertion is 

trivial. Hence we may assume r O2(B)l > 2  and choose x E B an element of 
order 4. Since ja f'l S = {j, jb} and x normalizes (S, b), we get jx E (S, b) \S  and 
[ O2(A)l = 2. Furthermore SS x = (S, b) and 

z : =  s n s ~ = z((s, b)) 

is a cyclic group such that S = ( j ) x  Z and ZO2(B) is a Sylow 2-subgroup of 

C6 (b). We apply Lemma 1.3 to the action of j on ZO2(B) and conclude that the 

sectional rank of a Sylow 2-subgroup of G is at most 4. By Lemma 1.1, the 

involution j is not conjugate to an involution of ZO2(B); an application of 

Thompson's transfer lemma yields j~. 02(G). By the solvability of Ca (j), each 

direct factor of M is normalized by j. Now the precise structure of Ca (j) implies 

the simplicity of M. 

In any case, we have seen that M is a simple group, and the sectional rank of a 

Sylow 2-subgroup is at most 4. By [7], M is a known group. Since j is an 
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involution with a solvable centralizer and O(CG ( j ) )~  1, M can only be one of 

the following groups: PSL(2, q), PSL(3, 3), PSU(3, 32), PSp(4, 3), G2(3), PSL(3, 4), 

A7, A9 or All. Using the precise structure of C~(j), one can exclude each of 

these groups; details are omitted and can be found in [2; lemma 3.2]. This 

completes the proof of (2.4). 

(2.5) M is a simple group. 

PROOF. Since 02(A)= 1, a Sylow 2-subgroup S of G is a product of two 

cyclic subgroups. Hence S' is abelian and the sectional rank of S is at most 4. In 

particular, the number of direct factors of M is at most 2. 

Assume M = MI • M2 is the direct product of two factors. Since S inter- 

changes M1 and M2 and since S' is abelian, the Sylow 2-subgroups of M1 and M2 

are elementary-abelian of order 4; hence M~ ~ PSL(2, p ' )  with p" = 3, 5 (mod 8). 

A Sylow p-subgroup of M is self-centralizing in G, hence p divides I AI. Thus 

Op(A) is a Sylow p-subgroup of M and N~(Op(A))= A. Since A has cyclic 

Sylow 2-subgroups, we infer p ' - - 3  (mod 4), and the order of a Sylow 2- 

subgroup of A does not exceed 4. But then S is a product of a cyclic subgroup 

and a cyclic subgroup of order 4, forcing the sectional rank of S to be at most 3. 

This contradiction shows the simplicity of M. 

(2.6) M is a Chevalley group of odd characteristic and belongs to the list in 

[7]. 

PROOF. By Lemma 1.2, a Sylow 2-subgroup of M has sectional rank at most 

4, and its commutator subgroup is an abelian group of rank at most 2. 

If the assertion is false, we can extract from [7] that M is one of the following 

groups: PSL(2,8), PSL(2, 16), PSL(3,4), PSU(3,42), A7, M~1, M12. 

Since A tq B = 1, an involution of A cannot be conjugate to an involution of 

B;  in particular, G has at least two conjugacy classes of involutions. 

If M is one of the Chevalley groups, then M has only one conjugacy class of 

involutions; in particular either A tq M or B f3 M has odd order. If 2 ~ is the 

exponent of a Sylow 2-subgroup of M, then the order of a Syiow 2-subgroup of G 

is bounded by 2 n" [ G : M ]  2. This argument excludes the Chevalley groups of 

characteristic 2. 

In case M ~ A7, we get G = E7. But then a Sylow 2-subgroup of G is not a 

product of two cyclic subgroups. 

The fact that Aut(M~I)~MH has only one conjugacy class of involutions 

excludes MN. In order to exclude M~2, one needs the information about the 

structure of A and B. 
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Thus M turns out to be a Chevalley group of odd characteristic. 

(2.7) There exists an odd prime power q with M -  PSL(2, q). 

PROOF. By (2.6), M is a Chevalley group of odd characteristic p and belongs 

to the list in [7]. Since the commutator subgroup of a Sylow 2-subgroup of M is 
an abelian group of rank at most 2, the group M is isomorphic to one of the 
following groups: PSL(2, q), PSL(3, q), PSU(3, q2), G2(q), 3D,(q) or ~G2(q). 

As 02(B)~ 1, the prime number p divides IA I. By [13] Or(A) is a Sylow 

p-subgroup of O(A). Hence A is contained in NG(Op(A)), and A contains a 

Sylow 2-subgroup of No(Or(A)); in particular, the Sylow 2-subgroups of 
NM ( Q  (A)) are cyclic. This implies that M is a Chevalley group of Lie rank 1, 

see [1]. 
If M -~ 2G~(q), then G = M and the Sylow 2-subgroups cannot be a product of 

two cyclic subgroups. 

In order to exclude the case M ~ PSU(3, q2), one can use the list of subgroups 

of M, see [12]. 

We proved M ~- PSL(2, p ') .  

An application of Proposition 1.6 now completes the proof of the theorem. 

3. Proof of the Corollary 

Since a supersolvable group has a nilpotent commutator subgroup [9; VI, 9.1], 

the group G satisfies the hypothesis and conclusion of the theorem. Without 

loss, S(G) = 1. Then G contains a unique minimal normal subgroup, which is 

contained in a normal subgroup M, isomorphic to PGL(2, p ~) with an odd prime 
number p and p" > 3. Now we apply Proposition 1.6 to conclude that A contains 
the M-normalizer of a suitable Sylow 2-subgroup of M. Thus this normalizer is 
supersolvable as well. This forces e = 1 and proves the Corollary. 
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