A CHARACTERIZATION OF PGL(2, q), q ODD

BY

UDO PREISER

ABSTRACT

Let G be a finite group and A and B solvable subgroups of G , such that $G = AB$ and 2 is the only common prime divisor of A and B. Under suitable restrictions of the 2-structure of A and B , it is shown that either G is solvable or G contains a solvable normal subgroup N, such that *G/N* contains a normal subgroup, which is isomorphic to $PGL(2, q)$, q odd.

Let G be a finite group and A and B solvable subgroups of G satisfying $G = AB$. It is an open problem to describe the structure of G.

By a famous theorem of Wielandt and Kegel, G is solvable, if A and B are nilpotent. There are various other theorems describing similar conditions, which force G to be solvable. However, there are non-solvable groups, which are the product of two solvable subgroups. Using the classification of the finite simple groups, Arad's student Fisman recently determined those finite simple groups, which are a product of two solvable subgroups of coprime orders, see [4]. If A and B have coprime orders, then we have $N = (N \cap A)(N \cap B)$ for any normal subgroup N of G ; this allows one to determine all composition factors of a finite group, which is a product of two solvable subgroups of coprime orders.

If there is a prime number dividing both $|A|$ and $|B|$, then there might exist normal subgroups N of G, such that N is not the product of its subgroups $N \cap A$ and $N \cap B$. Indeed, if you take $G = PGL(2, p^e)$, p odd, A the normalizer of a Sylow p-subgroup of G and B a cyclic subgroup of order $p^e + 1$, then you get $G = AB$. On the other hand, this factorization does not intersect the normal subgroup $N = PSL(2, p^e)$ in a factorization of N. This is just the example which we want to characterize. More generally, we want to prove:

THEOREM. *Let G be a finite group, which contains subgroups A and B, satisfying the following conditions:*

Received March 15, 1982

(a) $G = AB$.

(b) $(|A|, |B|) = 2^k$ *for some k.*

(c) The *group B is a nilpotent group and has a cyclic Sylow 2-subgroup.*

(d) The factor group $A/O₂(A)O(A)$ is a cyclic 2-group.

If S(G) denotes the largest solvable normal subgroup of G, then either $G = S(G)$ or there exists an odd prime power q, $q > 3$, such that $PGL(2,q) \leq$ $G/S(G) \leq P\Gamma L(2, q)$ holds.

This is a generalization of a theorem of Finkel and Ward [3], who considered finite groups G, satisfying the hypothesis of the theorem above and in addition $[A:O_2(A)O(A)] \leq 2$. They proved that such a group is either solvable or $G/S(G)$ contains a normal subgroup, which is isomorphic to $PGL(2, q)$ with $q \equiv 3 \pmod{4}$.

As in [3], we can apply this theorem to products of supersolvable and nilpotent groups and prove:

COROLLARY. Let $G = AB$ be a finite group with A a supersolvable and B a *nilpotent subgroup. Assume that* $(|A|, |B|)$ *is a power of 2, and that* $O_2(B)$ *and the Sylow 2-subgroup of A | A' are cyclic. Then either* $G = S(G)$ *or there exists an odd prime number p, p > 3, such that* $PGL(2, p) \leq G/S(G) \leq PFL(2, p)$ *holds.*

1. Notation and preliminary results

Our notation is standard and can be found in [5] or [9]. Moreover, all groups considered are finite. The following results are frequently used:

LEMMA 1.1 [9; VI, 4.5]. *If* $G = AB$, $A \cap B = 1$ and $x \neq 1$ is an element of A, *then x is not conjugate to an element of B.*

LEMMA 1.2. If $G = AB$ with A and B cyclic 2-groups, then the commutator *subgroup G' of G is an abelian group of rank at most 2. The sectional rank of G is at most 4.*

PROOF. By a theorem of Ito [9; VI, 4.4], the commutator subgroup G' of G is an abelian group, generated by at most two elements, see [8; Satz 17]. Since the rank of the abelian group G/G' is clearly at most 2, the sectional rank of G evidently is at most 4.

LEMMA *1.3. Let G be a 2-group. Suppose that there exists an involution j in G such that* $C_G(j)$ has rank 2. Then $SCN_3(G) = \emptyset$; *in particular, the sectional rank of G is at most 4.*

PROOF. By our hypothesis, *j* is contained in each elementary-abelian subgroup of order 4, which is centralized by i .

Let N be an elementary-abelian normal subgroup of G and suppose $|N| \geq 8$. Then $|C_N(j)| \ge 4$ and hence $j \in C_N(j)$. Thus we get $N \le C_G(j)$, a contradiction.

We conclude that the order of an elementary-abelian, normal subgroup of G is at most 4. Now we can apply [11] and find that the sectional rank of G is at most 4.

LEMMA 1.4 [9; VI, 4.6]. *If G = AB and if p is a prime number, then there exist Sylow p-subgroups S of A and T of B such that ST is a Sylow p-subgroup of G.*

PROPOSITION 1.5. *Let G be a finite group with subgroups A and B such that* $G = AB$, $(|A|, |B|) = 1$, $A/O₂(A)O(A)$ is an abelian 2-group and B is a *nilpotent group of odd order. Then G is solvable.*

PROOF. Using the Unbalanced Group Theorem, Finkel and Lundgren proved this in [2]. A more elementary proof can be found in [10].

PROPOSITION 1.6. *Let G be a group which satisfies the hypothesis of the theorem. Let p be an odd prime,* $q = p^2 > 3$ *and suppose that G contains a normal subgroup M, isomorphic to* PSL(2, q), *and that G is contained in the automorphism group* $P\Gamma L(2,q)$ *of* $PSL(2,q)$ *. Then* $O_2(A) = 1$ *and G* contains a normal *subgroup isomorphic to* PGL(2, q).

PROOF. By inspection of the subgroups of G or by Lemma 1.5, we infer $O_2(B) \neq 1$. Clearly, $D = A \cap B$ is a 2-group. Hence $\langle (A \cap B)^G \rangle$ is contained in A. This implies $A \cap B = 1$.

Now let P be a Sylow p-subgroup of M. Since $C_G(P) = P$, a conjugate of P is contained in A ; without loss P is contained in A . By inspection of the subgroups of M [9; II, 8.27], we conclude

$$
N_{\mathcal{M}}(P)\leq A\leq N_{G}(P)
$$

and that $B \cap M$ contains a cyclic subgroup of order $(q + 1)/2$. Since $|A \cap M|_2 \cdot |B \cap M|_2 < |M|_2$ holds, the index $[G:M]$ is even.

If e is odd, the result follows immediately. Consequently, we may assume e to be even. Then 2 does not divide $(q + 1)/2$ and $B \cap M$ has odd order. Thus $G \setminus M$ contains an involution. Since this involution centralizes a cyclic subgroup of M of order $(q + 1)/2$, this automorphism cannot be induced by a field automorphism. From the description of a Sylow 2-subgroup of $PIL(2, q)$ [6; lemma 2.3], it follows that this involution is induced by a diagonal automorphism; in particular, G contains a normal subgroup isomorphic to $PGL(2, q)$.

2. Proof of the Theorem

Suppose the theorem is false, and let G be a counterexample of minimal order. If N is a non-trivial normal subgroup of G and if $\bar{G} = G/N$, then $\vec{G} = \vec{A}\vec{B}$, and \vec{A} and \vec{B} satisfy the hypothesis of the theorem. Because of the minimality of G, the group \overline{G} satisfies the conclusion of the theorem. If X is a proper subgroup of G, which either contains A or B, then $X = (X \cap A)(X \cap B)$ and X satisfies the hypothesis and conclusion of the theorem.

By Proposition 1.5 we get $O_2(B) \neq 1$. The famous theorem of Wielandt and Kegel [9; VI, §4] implies $A \neq O_2(A)$. We begin by showing:

(2.1) The group G contains exactly one minimal normal subgroup M , which is a direct product of non-abelian simple groups. In particular $S(G) = 1$.

PROOF. Let M be a minimal normal subgroup of G. Then *G/M* satisfies the conclusion of the theorem. Since G does not satisfy the conclusion of the theorem, M is not solvable and a direct product of non-abelian simple groups.

Assume L is a minimal normal subgroup with $L \neq M$. Since G/L as well satisfies the conclusion of the theorem, G has precisely two minimal normal subgroups, and there exist odd prime powers q and r such that $L \cong PSL(2, r)$ and $M \cong \text{PSL}(2, q)$ holds.

Define $P = F(M \cap A)$ the Fitting subgroup of $M \cap A$. By Proposition 1.6 P is a Sylow subgroup of M of order q . We have

$$
N_G(P)=AN_B(P).
$$

As L is contained in $N_G(P)$, $N_G(P)$ is non-solvable and $O_2(N_B(P)) \neq 1$ by Proposition 1.5. Let b be the involution in B . Then

$$
\langle b^G \rangle \leq N_G(P)
$$

and hence L is contained in $\langle b^G \rangle$.

By symmetry, M as well is contained in $\langle b^G \rangle$. But now

$$
M \leq \langle b^G \rangle \leq N_G(P).
$$

This contradiction completes the proof of (2.1).

(2.2) We have $AM = G = BM$. In particular, G/M is a 2-group.

PROOF. Assume $AM < G$. Then $AM = A(B \cap AM)$. By the minimality of G, there exists an odd prime power q such that $M \cong PSL(2, q)$ and AM contains a normal subgroup isomorphic to $PGL(2, q)$. Thus

$$
G \leq \text{Aut}(M) = \text{P}\Gamma\text{L}(2,q)
$$

and G is no counterexample.

A similar argument shows $G = BM$. As $(|A|, |B|)$ is a power of 2, the factor group *G/M* is a 2-group.

(2.3) Suppose $A \leq L < G$. Then $L \cap B$ has odd order and L is solvable. In particular we have $A \cap B = 1$.

PROOF. Assume $L \cap O_2(B) \neq 1$. The normal closure of $L \cap O_2(B)$ is contained in L . Since G contains exactly one minimal normal subgroup, M is contained in L , contradicting (2.2) .

We proved $L \cap O_2(B) = 1$. By Proposition 1.5, L is solvable.

(2.4) We have $O_2(A) = 1$.

PROOF. Assume $O_2(A) \neq 1$. By Lemma 1.4, there exists a Sylow 2-subgroup S of A such that $SO_2(B)$ is a Sylow 2-subgroup of G. Let b be an involution in B. Then b normalizes S, and if X is a $\langle b \rangle$ -invariant normal subgroup of S contained in *O*₂(*A*), then *X* = 1 by (2.3). In particular, *S* is abelian and *O*₂(*A*) \cap *O*₂(*A*)^{*b*} = 1. Hence $O_2(A)$ is cyclic and S has rank 2.

Let *j* be the involution in $O_2(A)$. Again by (2.3), S is a Sylow 2-subgroup of $C_G(i)$ and $C_G(i)$ is solvable; more exactly we get $C_G(i)$ = SO($C_G(i)$).

We now claim that the sectional rank of a Sylow 2-subgroup of G is at most 4 and that the minimal normal subgroup M is simple. If $O_2(B)$ has order 2, then the sectional rank of a Sylow 2-subgroup of G is at most 3, and the assertion is trivial. Hence we may assume $|O_2(B)| > 2$ and choose $x \in B$ an element of order 4. Since $j^G \cap S = \{j, j^b\}$ and x normalizes $\langle S, b \rangle$, we get $j^x \in \langle S, b \rangle$ and $|O_2(A)| = 2$. Furthermore $SS^* = \langle S, b \rangle$ and

$$
Z:=S\cap S^* = Z(\langle S,b\rangle)
$$

is a cyclic group such that $S = \langle j \rangle \times Z$ and $ZO_2(B)$ is a Sylow 2-subgroup of $C_G(b)$. We apply Lemma 1.3 to the action of j on $ZO₂(B)$ and conclude that the sectional rank of a Sylow 2-subgroup of G is at most 4. By Lemma 1.1, the involution *i* is not conjugate to an involution of $ZO₂(B)$; an application of Thompson's transfer lemma yields $j \notin O^2(G)$. By the solvability of $C_G(i)$, each direct factor of M is normalized by j. Now the precise structure of $C_G(j)$ implies the simplicity of M.

In any case, we have seen that M is a simple group, and the sectional rank of a Sylow 2-subgroup is at most 4. By [7], M is a known group. Since j is an

182 U. PREISER Isr. J. Math.

involution with a solvable centralizer and $O(C_G(i)) \neq 1$, M can only be one of the following groups: $PSL(2, q)$, $PSL(3, 3)$, $PSU(3, 3^2)$, $PSp(4, 3)$, $G_2(3)$, $PSL(3, 4)$, A_7 , A_9 or A_{11} . Using the precise structure of $C_6(i)$, one can exclude each of these groups; details are omitted and can be found in [2; lemma 3.2]. This completes the proof of (2.4).

 (2.5) *M* is a simple group.

PROOF. Since $O_2(A) = 1$, a Sylow 2-subgroup S of G is a product of two cyclic subgroups. Hence S' is abelian and the sectional rank of S is at most 4. In particular, the number of direct factors of M is at most 2.

Assume $M = M_1 \times M_2$ is the direct product of two factors. Since S interchanges M_1 and M_2 and since S' is abelian, the Sylow 2-subgroups of M_1 and M_2 are elementary-abelian of order 4; hence $M_1 \cong PSL(2, p^e)$ with $p^e \equiv 3, 5 \pmod{8}$. A Sylow p-subgroup of M is self-centralizing in G, hence p divides $|A|$. Thus $O_p(A)$ is a Sylow p-subgroup of M and $N_G(O_p(A)) = A$. Since A has cyclic Sylow 2-subgroups, we infer $p^2 \equiv 3 \pmod{4}$, and the order of a Sylow 2subgroup of A does not exceed 4. But then S is a product of a cyclic subgroup and a cyclic subgroup of order 4, forcing the sectional rank of S to be at most 3. This contradiction shows the simplicity of M.

 (2.6) M is a Chevalley group of odd characteristic and belongs to the list in [7].

PROOF. By Lemma 1.2, a Sylow 2-subgroup of M has sectional rank at most 4, and its commutator subgroup is an abelian group of rank at most 2.

If the assertion is false, we can extract from [7] that M is one of the following groups: PSL(2, 8), PSL(2, 16), PSL(3, 4), PSU(3, 4²), A_7 , M_{11} , M_{12} .

Since $A \cap B = 1$, an involution of A cannot be conjugate to an involution of B; in particular, G has at least two conjugacy classes of involutions.

If M is one of the Chevalley groups, then M has only one conjugacy class of involutions; in particular either $A \cap M$ or $B \cap M$ has odd order. If 2^{*n*} is the exponent of a Sylow 2-subgroup of M , then the order of a Sylow 2-subgroup of G is bounded by $2^n \cdot [G:M]^2$. This argument excludes the Chevalley groups of characteristic 2.

In case $M \cong A_7$, we get $G = \Sigma_7$. But then a Sylow 2-subgroup of G is not a product of two cyclic subgroups.

The fact that $Aut(M_{11}) \cong M_{11}$ has only one conjugacy class of involutions excludes M_{11} . In order to exclude M_{12} , one needs the information about the structure of A and B.

Thus M turns out to be a Chevalley group of odd characteristic.

(2.7) There exists an odd prime power q with $M \approx PSL(2, q)$.

PROOF. By (2.6), M is a Chevalley group of odd characteristic p and belongs to the list in [7]. Since the commutator subgroup of a Sylow 2-subgroup of M is an abelian group of rank at most 2, the group M is isomorphic to one of the following groups: PSL(2, q), PSL(3, q), PSU(3, q²), $G_2(q)$, ${}^3D_4(q)$ or ${}^2G_2(q)$.

As $O_2(B) \neq 1$, the prime number p divides |A|. By [13] $O_p(A)$ is a Sylow p-subgroup of $O(A)$. Hence A is contained in $N_G(O_p(A))$, and A contains a Sylow 2-subgroup of $N_G(O_p(A))$; in particular, the Sylow 2-subgroups of $N_M(O_n(A))$ are cyclic. This implies that M is a Chevalley group of Lie rank 1, see [1].

If $M \approx {}^2G_2(q)$, then $G = M$ and the Sylow 2-subgroups cannot be a product of two cyclic subgroups.

In order to exclude the case $M \cong \text{PSU}(3, q^2)$, one can use the list of subgroups of M, see [12].

We proved $M \cong PSL(2, p^e)$.

An application of Proposition 1.6 now completes the proof of the theorem.

3. Proof of the Corollary

Since a supersolvable group has a nilpotent commutator subgroup [9; VI, 9.1], the group G satisfies the hypothesis and conclusion of the theorem. Without loss, $S(G) = 1$. Then G contains a unique minimal normal subgroup, which is contained in a normal subgroup M, isomorphic to $PGL(2, p^e)$ with an odd prime number p and $p^2 > 3$. Now we apply Proposition 1.6 to conclude that A contains the M -normalizer of a suitable Sylow 2-subgroup of M . Thus this normalizer is supersolvable as well. This forces $e = 1$ and proves the Corollary.

REFERENCES

1. R. W. Carter, *Simple Groups of Lie* Type, John Wiley and Sons, London, 1972.

2. D. Finkel and J. R. Lundgren, *Solvability of factorizable groups,* J. Algebra 57 (1979), 271-278.

3. D. Finkel and M. Ward, *Products ofsupersolvable and nilpotent groups,* Arch. Math. 36 (1981), 385-393.

4. E. Fisman, *On the product of two finite solvable groups,* preprint.

5. D. Gorenstein, *Finite Groups,* New York, 1968.

6. D. Gorenstein, *Finite groups the centralizers of whose involutions have normal 2-complements,* Canad. J. Math. 21 (1969), 335-357.

7. D. Gorenstein and K. Harada, *Finite groups whose 2-subgroups are generated by at most 4 elements, Mem. Am. Math. Soc. 147 (1974), 1-464.*

8. B. Huppert, *Über das Produkt von paarweise vertauschbaren zyklischen Gruppen, Math. Z. 58* (1953), 243-264.

9. B. Huppert, *Endliche Gmppen L* Springer, Berlin, 1968.

10. L. S. Kazarin, *Tests for the nonsimplicity of factorable groups*, Math. USSR Izv. 16 (1981), 261-278.

11. A. MacWilliams, *On 2-groups with no norrrtal abelian subgroups of rank 3, and their occurrence as Sylow 2-subgroups of Jinite simple groups,* Trans. Am. Math. Soc. 1'50 (1970), 345--408.

12. H. Mitchell, *Determination of the ordinary and modular ternary linear groups*, Trans. Am. Math. Soc. 12 (1911), 207-242.

13. G. M. Seitz, *Flag transitive subgroups of Chevalley groups,* Ann. of Math. 97 (1973), 27-57.

FAKULTÄT FÜR MATHEMATIK UNIVERSITÄT BIELEFELD D-4800 BIELEFELD, FRG